1.Put VS Patch?

Video Link : https://www.youtube.com/watch?v=LJajki|5SRHE&t=499s

When a client needs to replace an existing Resource entirely, they can use PUT. When
they're doing a partial update, they can use HTTP PATCH.

For instance, when updating a single field of the Resource, sending the complete Resource
representation can be cumbersome and uses a lot of unnecessary bandwidth. In such
cases, the semantics of PATCH make a lot more sense.

What is PUT

PUT is another HTTP method used to create a new resource at a specified URI or to update
an existing resource. Although PUT can be used to create a resource, it is most often used
to update resource. To create a new resource, using PUT we need to know the exact URI
where the data needs to be put. If incase there is data in the specified URI, the entire data is
overwritten which is update.

{

“id”:5
"blog title": "What is PUT",
"blog post": "Confused whether to use PUT or PATCH or POST...",
"blog post author": "programmerspub"

To create a resource at specified URI /5:

HTTP PUT https://programmerspub.com/blog/5

Payload:
{
"blog title": "What is PUT",
"blog post": "Confused whether to use PUT or PATCH or POST...",

"blog post author": "programmerspub"

https://www.youtube.com/watch?v=LJajkjI5RHE&t=499s

To update a resource:

HTTP PUT https://programmerspub.com/blog/5

Payload:

{

"blog title": "What is PUT",

"blog post": "Confused whether to use PUT or PATCH or
POST. . .updated post...",

"blog post author": "programmerspub"

}

Most important thing to remember is the PUT payload should have all the fields of the
resource when updating or else the resource is overwritten with the data we send.

For example consider this PUT request where we send only the updated blog title.

HTTP PUT https://programmerspub.com/blog/general/5

Payload:

{
"blog title": "What is PUT - updated"

After the PUT request only the blog title has the updated value while blog_post and
blog_post_author fields are lost.

Response:

{
"blog title": "What is PUT - updated"

}

What is PATCH:

PATCH is another HTTP method which is used to update a resource with partial data. Unlike
PUT, PATCH does not need the full payload to update a resource. For example if a resource
has 100 fields, using PATCH would be a better option than PUT as PUT requires all 100
fields to be sent again to update a resource.

Existing Resource:

"blog title": "What is PATCH",
"blog post": "Confused whether to use PUT or PATCH or POST...",
"blog post author": "programmerspub"

HTTP PATCH https://programmerspub.com/blog/general/5

Payload:

{
"blog title": "What is PATCH - updated"

After the PATCH request, only the field blog_title is update while other fields remain
intact.

"blog title": "What is PATCH - updated",
"blog post": "Confused whether to use PUT or PATCH or POST...",
"blog post author": "programmerspub"

2.What are HTTP status codes?

Video Link : https://www.youtube.com/watch?v=Izh1yEhX60Y

HTTP status codes are three-digit responses from the server to the browser-side request.

These status codes (also called response status codes) serve as a means of communication
between the server and the internet browser and there are multiple code classes based on
the type of information they are communicating. The differences in classes are indicated
through the first digit of the error code, for example: just like a 404, any other 4xx will mean
that in some way the page or website could not be reached, while a 2xx means that your
request was successfully completed.

HTTP status codes are divided into 5 “classes”. These are groupings of responses that have
similar or related meanings. Knowing what they are can help you quickly determine the

general substance of a status code before you go about looking up its specific meaning.

The five classes include:

https://www.youtube.com/watch?v=lzh1yEhX60Y

100s: Informational codes indicating that the request initiated by the browser is
continuing.

200s: Success codes returned when browser request was received, understood, and
processed by the server.

300s: Redirection codes returned when a new resource has been substituted for the
requested resource.

400s: Client error codes indicating that there was a problem with the request.

500s: Server error codes indicating that the request was accepted, but that an error
on the server prevented the fulfillment of the request.

Within each of these classes, a variety of server codes exist and may be returned by
the server. Each individual code has a specific and unique meaning, which we’ll
cover in the more comprehensive list below.

200 Status Codes

This is the best kind of HTTP status code to receive. A 200-level response
means that everything is working exactly as it should.

e 200: “Everything is OK." This is the code that is delivered when a web

page or resource acts exactly the way it's expected to.

201: “Created.” The server has fulfilled the browser’s request, and as
a result, has created a new resource.

202: “Accepted.” The server has accepted your browser’s request but
is still processing it. The request ultimately may or may not result in a
completed response.

400 Status Codes

At the 400 level, HTTP status codes start to become problematic. These are error codes
specifying that there’s a fault with your browser and/or request.

400: “Bad Request.” The server can’t return a response due to an error on the client’s
end. See our guide for resolving this error.

401: “Unauthorized” or “Authorization Required.” This is returned by the server when
the target resource lacks valid authentication credentials. You might see this if you've
set up basic HTTP authentication using htpasswd.

403: “Access to that resource is forbidden.” This code is returned when a user
attempts to access something that they don’t have permission to view. For example,
trying to reach password-protected content without logging in might produce a 403
error.

e 404: “The requested resource was not found.” This is the most common error
message of them all. This code means that the requested resource does not exist,
and the server does not know if it ever existed.

e 405: “Method not allowed.” This is generated when the hosting server (origin server)
supports the method received, but the target resource doesn't.

500 Status Codes

500-level status codes are also considered errors. However, they denote that the problem is
on the server’s end. This can make them more difficult to resolve.

e 500: “There was an error on the server and the request could not be completed.” This
is generic code that simply means “internal server error”. Something went wrong on
the server and the requested resource was not delivered. This code is typically
generated by third-party plugins, faulty PHP, or even the connection to the database
breaking. Check out our tutorials on how to fix the error establishing a database
connection and other ways to resolve a 500 internal server error.

e 501: “Not Implemented.” This error indicates that the server does not support the
functionality required to fulfill the request. This is almost always a problem on the
web server itself, and usually must be resolved by the host. Check out our
recommendations on how to resolve a 501 not implemented error.

e 502: “Bad Gateway.” This error code typically means that one server has received an
invalid response from another, such as when a proxy server is in use. Other times a
query or request will take too long, and so it is canceled or killed by the server and
the connection to the database breaks.

3.What is Node Js? Difference b/w Javascript and Node Js?

Video Links:
e https://www.voutube.com/watch?v=_RSI| 3S3Anxg
e https://www.youtube.com/watch?v=B8KdIIPwxBw

Node.js is a server-side platform built on Google Chrome's JavaScript Engine (V8 Engine).
Node.js was developed by Ryan Dahl in 2009

Node.js is an open source, cross-platform runtime environment for developing server-side
and networking applications. Node.js applications are written in JavaScript, and can be run
within the Node.js runtime on OS X, Microsoft Windows, and Linux.

Node.js also provides a rich library of various JavaScript modules which simplifies the
development of web applications using Node.js to a great extent.

https://www.youtube.com/watch?v=_RSL3S3Anxg
https://www.youtube.com/watch?v=B8KdllPwxBw

What Is Node.js Written In?

Node.js is written in C, C++, and JavaScript.

Wikipedia defines Node.js as “a packaged compilation of Google’s V8 JavaScript engine,
the libuv platform abstraction layer, and a core library, which is itself primarily written in
JavaScript.”

The runtime uses Chrome V8 internally, which is the JavaScript execution engine, and it's
also written in C++. This adds additional use cases to Node.js’'s repertoire, such as
accessing internal system functionality (like networking).

‘ JavaScript Code we write ‘
r |
[| []
Node -
[oypo | [Cpan]
- |

va libury

Why Node.js?

Node.js has become the de facto tool for developing server-side and network applications.
Here is why:

1. Node.js is really fast: Having been built on chrome V8 Javascript engine, its library
is extremely fast for code execution.

2. Node Package Manager (NPM): Node Package Manager has more than 50,000
bundles, so whatever functionality is required for an application can be easily
imported from NPM.

3. Node.js uses asynchronous programming: All APIs of Node.js library are
asynchronous (i.e., non-blocking), so a Node.js-based server does not wait for the
AP to return data. The server calls the API, and in the event that no data is
returned, the server moves to the next API the Events module of Node.js helps
the server get a response from the previous API call. This also helps with the
speed of Node.js.

4. No buffering: Node.js dramatically reduces the processing time while uploading
audio and video files. Node.js applications never buffer data and simply output the
data in chunks.

5. Single-threaded: Node.js makes use of a single-threaded model with event
looping. As a result, it can provide service to a much larger number of requests
than traditional servers like Apache HTTP Server.

6. Highly scalable: Node.js server responds in a non-blocking way, making it highly
scalable in contrast with traditional servers, which create limited threads to handle
requests.

These reasons more than justify the popularity of the Node.js platform and why it is being
adopted by a large number of organizations and businesses. Now, let's familiarize ourselves
with the different parts of Node.js.

Difference between Node.JS and Javascript

Let us talk about the differences between Node.JS and Javascript.

Parameters Javascript Node js

Basics It is a programming language. We It is a runtime environment for
use JS mainly to write scripts ona = Javascript that lets a user run

website that makes web pages this programming language on

more dynamic in nature. the server-side as well.
Running on We can only run JS on browsers. NodeJS helps us run JS
Browsers outside the browser as well.
Client-side and Itis utilised on the web page’s It lets us use JS on the
Server-side client-side. server-side as well since it

works on the server-side.

HTML Tags The JS can easily add HTML and ~ The Node.JS, on the other
even play with the DOM. hand, isn’t capable enough to
add various HTML tags.

Mode of Running

We can run JS in any browser
engine, such as the
Spidermonkey in the Firefox

Inside Node.JS, we have the
JS engine known as V8. It
helps in parsing and running

browser and the JS core in the the JS code.

Safari browser.

Type of It runs mainly on the client-side. It runs on the server-side.

Development Thus, it is used in the Thus, it helps in the server-side

development of the front end. development via the JS.

Frameworks Some very popular JS frameworks

are TypedJS, RamdaJs, efc.

Some very commonly used
Node.JS modules are Express,
Lodash, etc. All of these
modules need to be imported
from the npm.

Writing of Script ~ The Javascript is nothing but the C, C++, and also Javascript

ECMA script’s updated version are used for writing Node.JS.
that makes use of the Chrome V8
engine that is written in the C++

language.

4.Node js is single threaded or multi threaded? Explain in detail
what that means.

Video Link:

e htips://www.youtube.com/watch?v=YSyFSnisip0
e https://www.youtube.com/watch?v=6YqgsagXlUoTM

https://www.youtube.com/watch?v=YSyFSnisip0
https://www.youtube.com/watch?v=6YgsqXlUoTM

Event Loop Playground:

http://latentflip.com/loupe/?code=CmNvbnNvbGUubGInKCJlaSEIKTsKCnNIdFRpbWYVvdX
0ZnVuY3Rpb249dGItZW91dCgplHsKICAgIGNvbnNvbGUubGInKCJDbGljayB0aGUgYnV0d

GOulSIpOwp9L CATMDAWKTsKCmNvbnNvbGUubGINKCJIXZWxjb211IHRVIGXvdXBILilpOw
%3D%3D!'PGJ1dHRVb|5DbGliayBtZSE8L2J1dHRVbj4%3D

What a Single-Threaded Process is

A single-threaded process is the execution of programmed instructions in a single sequence.
Having said that, if an application has the following set of instructions:

e |Instruction A

e Instruction B

e |Instruction C
If these set of instructions are executed in a single-threaded process, the execution would
look like the following:

Single thread
c N

Core

What a Multi-Threaded Process is

A multi-threaded process is the execution of programmed instructions in multiple sequences.
Therefore, instructions won’t have to wait to execute unless multiple instructions are grouped
within different sequences.

http://latentflip.com/loupe/?code=CmNvbnNvbGUubG9nKCJIaSEiKTsKCnNldFRpbWVvdXQoZnVuY3Rpb24gdGltZW91dCgpIHsKICAgIGNvbnNvbGUubG9nKCJDbGljayB0aGUgYnV0dG9uISIpOwp9LCA1MDAwKTsKCmNvbnNvbGUubG9nKCJXZWxjb21lIHRvIGxvdXBlLiIpOw%3D%3D!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D
http://latentflip.com/loupe/?code=CmNvbnNvbGUubG9nKCJIaSEiKTsKCnNldFRpbWVvdXQoZnVuY3Rpb24gdGltZW91dCgpIHsKICAgIGNvbnNvbGUubG9nKCJDbGljayB0aGUgYnV0dG9uISIpOwp9LCA1MDAwKTsKCmNvbnNvbGUubG9nKCJXZWxjb21lIHRvIGxvdXBlLiIpOw%3D%3D!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D
http://latentflip.com/loupe/?code=CmNvbnNvbGUubG9nKCJIaSEiKTsKCnNldFRpbWVvdXQoZnVuY3Rpb24gdGltZW91dCgpIHsKICAgIGNvbnNvbGUubG9nKCJDbGljayB0aGUgYnV0dG9uISIpOwp9LCA1MDAwKTsKCmNvbnNvbGUubG9nKCJXZWxjb21lIHRvIGxvdXBlLiIpOw%3D%3D!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D
http://latentflip.com/loupe/?code=CmNvbnNvbGUubG9nKCJIaSEiKTsKCnNldFRpbWVvdXQoZnVuY3Rpb24gdGltZW91dCgpIHsKICAgIGNvbnNvbGUubG9nKCJDbGljayB0aGUgYnV0dG9uISIpOwp9LCA1MDAwKTsKCmNvbnNvbGUubG9nKCJXZWxjb21lIHRvIGxvdXBlLiIpOw%3D%3D!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D

Multi thread

e
Core D]

Core E

Core

-

Shared

Memory

F—.

Our Node.js applications are only sort of single-threaded, in reality. We can run things in
parallel, but we don’t create threads or sync them. The virtual machine and the operating
system run the I/O in parallel for us, and when it’s time to send data back to our JavaScript
code, it's the JavaScript that runs in a single thread.

Node JS applications uses “Single Threaded Event Loop Model” architecture to handle
multiple concurrent clients.

There are many web application technologies like JSP, Spring MVC, ASP.NET, HTML, Ajax,
jQuery etc. But all these technologies follow “Multi-Threaded Request-Response”
architecture to handle multiple concurrent clients.

D m——)
D ——)

OO O
OO D O
T

ﬁ ﬁ POSIX threads doing

@ async /0 {multi-threaded)

Node JS Platform does not follow Request/Response Multi-Threaded Stateless Model. It
follows Single Threaded with Event Loop Model. Node JS Processing model mainly based

Node.js - Single Thread, Event

Event loop

Non-blocking

delegate ifo b
elegate /o to /o

libeio

Single
thread

SErvVes
all users

ifo result returned
2 EL after x time

on Javascript Event based model with Javascript callback mechanism.

As Node JS follows this architecture, it can handle more and more concurrent client requests

very easily.

The main heart of Node JS Processing model is “Event Loop”.

Here are Single Threaded Event Loop Model Processing Steps:

Clients Send request to Web Server.

Node JS Web Server internally maintains a Limited Thread pool to provide services

to the Client Requests.

e Node JS Web Server receives those requests and places them into a Queue. ltis

known as “Event Queue”.

e Event Loop uses Single Thread only. It is main heart of Node JS Platform Processing

Model.

e Even Loop checks any Client Request is placed in Event Queue. If no, then wait for
incoming requests for indefinitely.
e |[f yes, then pick up one Client Request from Event Queue

1. Starts process that Client Request

2. If that Client Request Does Not requires any Blocking IO Operations, then
process everything, prepare response and send it back to client.

3. If that Client Request requires some Blocking IO Operations like interacting
with Database, File System, External Services then it will follow different
approach

4. Checks Threads availability from Internal Thread Pool

5. Picks up one Thread and assign this Client Request to that thread.

6. That Thread is responsible for taking that request, process it, perform
Blocking 10 operations, prepare response and send it back to the Event Loop

7. Event Loop in turn, sends that Response to the respective Client.

Event Queue Node JS Platform Internal Thread Pool
reuesta | 000 Request-2 | | Request-1 @@ 000 @
Client-1 <::} Event Loop Y
o Single Threaded | .
C|ient-2 : Reguest-2 : __If)
N Database
0
0 v
0 Non-Blocking 10 S
Send Responses Tasks
Centn Process Here 0 =
Response-r g \ handle by File System
Request-1 Q
o Request-n B \'—l/
Request-2

Node JS Application/Node JS Server

Don’t Block the Event Loop (aka the Main Thread)

Like most solutions, there are advantages and disadvantages, and Node.js is not an
exclusion of this. Since we know Node.js runs using the event loop, aka as the main thread,
blocking the loop will indeed prevent the system from running other instructions regardless of
whether they belong to a single process or multiple different processes.

If our Node.js application is the one using intensive CPU processing power to execute
power, it means we cannot execute other sets of instructions until the heavy processing
power instruction completes. This is called blocking the event loop.

